
Fayol Inc. 0547824419

THIRD TERM

WEEKLY LESSON NOTES – B8

WEEK 7
Week Ending: 11-08-2023 DAY: Subject: Computing

Duration: 60mins Strand: Computational Thinking

Class: B8 Class Size: Sub Strand: Introduction to Programming

Content Standard:

B8.4.1.1. Show an understanding of

the concept of programming

Indicator:

B8.4.1.1.1 Describe the basic concepts in programming

Lesson:

1 of 2

Performance Indicator:

Learners can describe the basic concepts in programming

Core Competencies:

CC8.2: CP6.1

Reference: Computing Curriculum Pg. 36

Activities For Learning & Assessment Resources Progression

Starter (5mins)

Revise with learners to review their understanding in the previous lesson.

Share performance indicators and introduce the lesson.

Main (35mins)

Introduce the concept of programming and its importance in the world of

technology.

Explain that programming involves giving instructions to a computer to

perform specific tasks.

Discuss key concepts such as algorithms, variables, and control structures.

Provide a simple problem or task to solve (e.g., making a peanut butter and

jelly sandwich).

In groups, ask learners to design a step-by-step algorithm to complete the

task.

Introduce the concepts of variables and control structures (e.g., loops,

conditionals).

Demonstrate how variables can store and manipulate data, and how control

structures help control the flow of a program.

Provide examples and encourage learners to identify variables and control

structures in familiar scenarios.

Task learners to design a simple algorithm for a problem of their choice.

Pictures and

videos

Describing the

basic concepts

in programming

Allow learners to share their algorithms and discuss their thinking process

with the class if time permits

Assessment

1. What is programming, and why is it important in the world of

technology?

2. What are some key concepts in programming? Explain algorithms,

variables, and control structures.

3. In groups, design an algorithm for a simple task of your choice. Share

your algorithm with the class.

4. How do variables help in programming, and why are they important?

5. What are control structures, and how do they control the flow of a

program?

Reflection (10mins)

Use peer discussion and effective questioning to find out from learners

what they have learnt during the lesson.

Take feedback from learners and summarize the lesson.

Homework/Project Work/Community Engagement Suggestions

Task learners to design a simple algorithm for a problem of their choice

Potential Misconceptions/Student Learning Difficulties

None

Week Ending: 11-08-2023 DAY: Subject: Computing

Duration: 60mins Strand: Computational Thinking

Class: B8 Class Size: Sub Strand: Introduction to Programming

Content Standard:

B8.4.1.1. Show an understanding of

the concept of programming

Indicator:

B8.4.1.1.1 Describe the basic concepts in programming

Lesson:

2 of 2

Performance Indicator:

Learners can create a table to compare how the same arithmetic notations

are represented in coding and in classroom mathematics

Core Competencies:

CC8.2: CP6.1

Reference: Computing Curriculum Pg. 36

Activities For Learning & Assessment Resources Progression

Starter (5mins)

Revise with learners to review their understanding in the previous lesson.

Share performance indicators and introduce the lesson.

Main (35mins)

Explain the importance of arithmetic operations in programming for

performing calculations and manipulating data.

Discuss common arithmetic operations such as addition, subtraction,

multiplication, and division.

Provide learners with a table template with columns for arithmetic

notation, mathematical representation, and coding representation.

Arithmetic

Notation

Coding

Representation

Classroom

Mathematics

Addition + +

Subtraction - -

Multiplication * ×

Division / ÷

Exponentiation ** or ^ ^ or

Exponentiation

Parentheses () ()

Square Root sqrt() or **0.5 √

Absolute Value abs() │ │ or

Floor Division // ÷ (with quotient)

Modulo % % (Remainder)

Order of

Operations

Follows

PEMDAS/BODM

AS

Follows

PEMDAS/BODMAS

Pictures and

videos

Describing the

basic concepts

in programming

Guide learners to fill in the table by comparing arithmetic notations

commonly used in mathematics and their equivalent representations in

coding languages (e.g., "+" for addition, "-" for subtraction).

Review the completed comparison table as a class, discussing any

differences or similarities between the two representations.

Provide additional examples and ask learners to identify the corresponding

coding representation for given arithmetic expressions.

Assessment

1. What are some common arithmetic operations used in programming?

2. Create a comparison table with arithmetic notations, mathematical

representation, and coding representation.

3. Give an example of an arithmetic expression in mathematics, and identify

its coding representation.

4. How does the coding representation of arithmetic notations differ from

the mathematical representation?

5. Why is it important for programmers to understand and translate

mathematical concepts into coding representations?

Reflection (10mins)

Use peer discussion and effective questioning to find out from learners

what they have learnt during the lesson.

Take feedback from learners and summarize the lesson.

Homework/Project Work/Community Engagement Suggestions

Task learners to design a simple algorithm for a problem of their choice

Potential Misconceptions/Student Learning Difficulties

None

